Sentences:

1. $\forall x(T(x) \rightarrow \exists y(M(y) \wedge A(x, y)))$
2. $\exists \mathrm{x}(\mathrm{M}(\mathrm{x}) \wedge \forall \mathrm{y}(\mathrm{T}(\mathrm{y}) \rightarrow \mathrm{A}(\mathrm{y}, \mathrm{x})))$
3. $\forall x(T(x) \rightarrow \exists y(M(y) \wedge \neg A(x, y)))$
4. $\exists \mathrm{x}(\mathrm{T}(\mathrm{x}) \wedge \forall \mathrm{y}(\mathrm{M}(\mathrm{y}) \rightarrow \neg \mathrm{A}(\mathrm{x}, \mathrm{y})))$
5. $\forall x(M(x) \rightarrow \exists y(T(y) \wedge A(y, x)))$
6. $\exists \mathrm{x}(\mathrm{M}(\mathrm{x}) \wedge \forall \mathrm{y}(\mathrm{T}(\mathrm{y}) \rightarrow \neg \mathrm{A}(\mathrm{y}, \mathrm{x})))$
7. $\forall x(M(x) \rightarrow \exists y(T(y) \wedge \neg A(y, x)))$
8. $\exists \mathrm{x}(\mathrm{T}(\mathrm{x}) \wedge \forall \mathrm{y}(\mathrm{M}(\mathrm{y}) \rightarrow \mathrm{A}(\mathrm{x}, \mathrm{y})))$
9. $\forall x \forall y((T(x) \wedge T(y) \wedge x \neq y) \rightarrow \exists z(M(z) \wedge A(x, z) \wedge A(y, z)))$
10. $\exists x \exists y(M(x) \wedge M(y) \wedge \forall z(T(z) \rightarrow(A(x, z) \vee A(z, y))))$
11. $\forall x \forall y((T(x) \wedge T(y) \wedge x \neq y) \rightarrow \exists z(M(z) \wedge \neg A(x, z) \wedge \neg A(y, z)))$
12. $\exists \mathrm{x} \exists \mathrm{y}(\mathrm{T}(\mathrm{x}) \wedge \mathrm{T}(\mathrm{y}) \wedge \forall \mathrm{z}(\mathrm{M}(\mathrm{z}) \rightarrow(\mathrm{A}(\mathrm{x}, \mathrm{z}) \vee \mathrm{A}(\mathrm{y}, \mathrm{z}))))$
13. $\exists \mathrm{x} \exists \mathrm{y}(\mathrm{M}(\mathrm{x}) \wedge \mathrm{M}(\mathrm{y}) \wedge \forall \mathrm{z}(\mathrm{T}(\mathrm{z}) \rightarrow(\neg \mathrm{A}(\mathrm{z}, \mathrm{x}) \vee \neg \mathrm{A}(\mathrm{z}, \mathrm{y}))))$
14. $\forall x(M(x) \rightarrow \neg \exists y \exists z(T(y) \wedge T(z) \wedge y \neq z \wedge A(y, x) \wedge A(z, x)))$

Diagrams:

ANSWERS ON NEXT PAGE

Answers:

Sentences:

1. $\forall x(T(x) \rightarrow \exists y(M(y) \wedge A(x, y))$

- Every teacher attended at least one meeting.

2. $\exists \mathrm{x}(\mathrm{M}(\mathrm{x}) \wedge \forall \mathrm{y}(\mathrm{T}(\mathrm{y}) \rightarrow \mathrm{A}(\mathrm{y}, \mathrm{x})))$

- There is a meeting that every teacher attended.

3. $\forall x(T(x) \rightarrow \exists y(M(y) \wedge \neg A(x, y))) \quad T \quad T \quad F \quad T \quad F \quad T \quad F \quad T$

- For every teacher there is a meeting they did not attend.

4. $\exists \mathrm{x}(\mathrm{T}(\mathrm{x}) \wedge \forall \mathrm{y}(\mathrm{M}(\mathrm{y}) \rightarrow \neg \mathrm{A}(\mathrm{x}, \mathrm{y}))) \quad$ F \quad T T

- There is a teacher who attended no meetings. (opposite of 1)

5. $\forall \mathrm{x}(\mathrm{M}(\mathrm{x}) \rightarrow \exists \mathrm{y}(\mathrm{T}(\mathrm{y}) \wedge \mathrm{A}(\mathrm{y}, \mathrm{x})))$

T F T T T F T T

- For every meeting there is a teacher attended.

- There is a meeting that no teacher attended. (opposite of 5)

7. $\forall \mathrm{x}(\mathrm{M}(\mathrm{x}) \rightarrow \exists \mathrm{y}(\mathrm{T}(\mathrm{y}) \wedge \neg \mathrm{A}(\mathrm{y}, \mathrm{x}))) \mathrm{T}$ T T T F F T F

- For every meeting there is a teacher who did not attend. (opposite of 2)

8. $\exists \mathrm{x}(\mathrm{T}(\mathrm{x}) \wedge \forall \mathrm{y}(\mathrm{M}(\mathrm{y}) \rightarrow \mathrm{A}(\mathrm{x}, \mathrm{y}))) \quad$ F \quad F T F T F T F

- There is a teacher who attended every meeting. (opposite of 3)

9. $\forall x \forall y((T(x) \wedge T(y) \wedge x \neq y) \rightarrow \exists z(M(z) \wedge A(x, z) \wedge A(y, z)))$

F $\quad \mathrm{F} \quad \mathrm{F} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{T}$

- For every pair of teachers there is a meeting they both attended.

10. $\exists x \exists y(M(x) \wedge M(y) \wedge \forall z(T(z) \rightarrow(A(x, z) \vee A(z, y)))) \quad T \quad F \quad F \quad T \quad T \quad T \quad F \quad T$

- There is a pair of meetings such that every teacher went to one or the other.

11. $\forall x \forall y((T(x) \wedge T(y) \wedge x \neq y) \rightarrow \exists z(M(z) \wedge \neg A(x, z) \wedge \neg A(y, z)))$

F T F F F T F F

- For every pair of teachers there is a meeting that neither attended.

12. $\exists \mathrm{x} \exists \mathrm{y}(\mathrm{T}(\mathrm{x}) \wedge \mathrm{T}(\mathrm{y}) \wedge \forall \mathrm{z}(\mathrm{M}(\mathrm{z}) \rightarrow(\mathrm{A}(\mathrm{x}, \mathrm{z}) \vee \mathrm{A}(\mathrm{y}, \mathrm{z})))) \quad \mathrm{T}$ F T T T F $\mathrm{T} \quad \mathrm{T}$

- There is a pair of teachers such that for every meeting either the first teacher attended or the second teacher attended.

13. $\exists \mathrm{x} \exists \mathrm{y}(\mathrm{M}(\mathrm{x}) \wedge \mathrm{M}(\mathrm{y}) \wedge \forall \mathrm{z}(\mathrm{T}(\mathrm{z}) \rightarrow(\neg \mathrm{A}(\mathrm{z}, \mathrm{x}) \vee \neg \mathrm{A}(\mathrm{z}, \mathrm{y}))))$

T T F F F T F T

- There is a pair of meetings such that every teacher either did not attend the first meeting or did not attend the second meeting.

14. $\forall x(M(x) \rightarrow \neg \exists y \exists z(T(y) \wedge T(z) \wedge y \neq z \wedge A(y, x) \wedge A(z, x)))$

T T F F F F F F

- No meeting had two different teachers attending.

